Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.414
Filtrar
1.
Mycologia ; 116(1): 213-225, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38085557

RESUMO

Despite significant research on early and late leaf spot diseases of peanut, in vitro study of the respective causal agents, Passalora arachidicola and Nothopassalora personata, has been limited due to cultural challenges that make growth of these fungi difficult to quantify with traditional methods. Studies were conducted to evaluate the practicality of image analysis to assess radial growth and tissue volume by correlating these assessments to dry mass. Image analysis was also used to estimate radial growth rates for these fungi over time. Tissue area and volume were significantly correlated to dry mass for P. arachidicola in two separate experiments, and for N. personata when medium had been removed from tissues prior to dry mass assessments. Tissue area densities were the same for P. arachidicola and Pseudocercospora smilacicola, evaluated as a nonstromatal cercosporoid comparison, whereas tissue volume densities were greater for P. archidicola and N. personata than P. smilacicola. A quadratic relationship was observed between radial growth and incubation time for all isolates evaluated. Growth rates of P. arachidicola isolates were 2 to 4 times faster than N. personata during the first week of incubation and slowed over time. Growth rates of NP18R, a phenotype variant of N. personata, increased after neighboring colonies met and was nearly 2.5 times faster than the fastest rates observed for P. arachidicola. These experiments demonstrate that when fungal tissues are observable, image analysis is a useful assessment tool for P. arachidicola and N. personata. Care should be taken to monitor fungal phenotypic changes in these species because phenotype degeneration can affect growth rates.


Assuntos
Arachis , Ascomicetos , Arachis/microbiologia , Ascomicetos/crescimento & desenvolvimento
2.
Mar Drugs ; 20(3)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35323512

RESUMO

Four new dimeric sorbicillinoids (1-3 and 5) and a new monomeric sorbicillinoid (4) as well as six known analogs (6-11) were purified from the fungal strain Hypocrea jecorina H8, which was obtained from mangrove sediment, and showed potent inhibitory activity against the tea pathogenic fungus Pestalotiopsis theae (P. theae). The planar structures of 1-5 were assigned by analyses of their UV, IR, HR-ESI-MS, and NMR spectroscopic data. All the compounds were evaluated for growth inhibition of tea pathogenic fungus P. theae. Compounds 5, 6, 8, 9, and 10 exhibited more potent inhibitory activities compared with the positive control hexaconazole with an ED50 of 24.25 ± 1.57 µg/mL. The ED50 values of compounds 5, 6, 8, 9, and 10 were 9.13 ± 1.25, 2.04 ± 1.24, 18.22 ± 1.29, 1.83 ± 1.37, and 4.68 ± 1.44 µg/mL, respectively. Additionally, the effects of these compounds on zebrafish embryo development were also evaluated. Except for compounds 5 and 8, which imparted toxic effects on zebrafish even at 0.625 µM, the other isolated compounds did not exhibit significant toxicity to zebrafish eggs, embryos, or larvae. Taken together, sorbicillinoid derivatives (6, 9, and 10) from H. jecorina H8 displayed low toxicity and high anti-tea pathogenic fungus potential.


Assuntos
Ascomicetos/efeitos dos fármacos , Agentes de Controle Biológico , Hypocreales/química , Policetídeos , Animais , Ascomicetos/crescimento & desenvolvimento , Agentes de Controle Biológico/química , Agentes de Controle Biológico/isolamento & purificação , Agentes de Controle Biológico/farmacologia , Agentes de Controle Biológico/toxicidade , Camellia sinensis/microbiologia , Embrião não Mamífero , Estrutura Molecular , Policetídeos/química , Policetídeos/isolamento & purificação , Policetídeos/farmacologia , Policetídeos/toxicidade , Peixe-Zebra
3.
Int J Mol Sci ; 23(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35163522

RESUMO

Plant diseases that are caused by fungi and nematodes have become increasingly serious in recent years. However, there are few pesticide chemicals that can be used for the joint control of fungi and nematodes on the market. To solve this problem, a series of novel 1,2,4-oxadiazole derivatives containing amide fragments were designed and synthesized. Additionally, the bioassays revealed that the compound F15 demonstrated excellent antifungal activity against Sclerotinia sclerotiorum (S. sclerotiorum) in vitro, and the EC50 value of that was 2.9 µg/mL, which is comparable with commonly used fungicides thifluzamide and fluopyram. Meanwhile, F15 demonstrated excellent curative and protective activity against S. sclerotiorum-infected cole in vivo. The scanning electron microscopy results showed that the hyphae of S. sclerotiorum treated with F15 became abnormally collapsed and shriveled, thereby inhibiting the growth of the hyphae. Furthermore, F15 exhibited favorable inhibition against the succinate dehydrogenase (SDH) of the S. sclerotiorum (IC50 = 12.5 µg/mL), and the combination mode and binding ability between compound F15 and SDH were confirmed by molecular docking. In addition, compound F11 showed excellent nematicidal activity against Meloidogyne incognita at 200 µg/mL, the corrected mortality rate was 93.2%, which is higher than that of tioxazafen.


Assuntos
Antifúngicos/síntese química , Ascomicetos/crescimento & desenvolvimento , Oxidiazóis/síntese química , Succinato Desidrogenase/metabolismo , Amidas/química , Antifúngicos/química , Antifúngicos/farmacologia , Ascomicetos/efeitos dos fármacos , Ascomicetos/metabolismo , Linhagem Celular , Desenho de Fármacos , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Humanos , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Viabilidade Microbiana/efeitos dos fármacos , Modelos Moleculares , Estrutura Molecular , Oxidiazóis/química , Oxidiazóis/farmacologia , Plantas/efeitos dos fármacos , Plantas/microbiologia , Plantas/parasitologia , Conformação Proteica , Relação Estrutura-Atividade , Succinato Desidrogenase/química
4.
Biomolecules ; 12(1)2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-35053237

RESUMO

Neofusiccocum batangarum is the causal agent of scabby canker of cactus pear (Opuntia ficus-indica L.). The symptoms of this disease are characterized by crusty, perennial cankers, with a leathery, brown halo. Characteristically, a viscous polysaccharide exudate, caking on contact with air, leaks from cankers and forms strips or cerebriform masses on the surface of cactus pear cladodes. When this polysaccharide mass was partial purified, surprisingly, generated a gel. The TLC analysis and the HPLC profile of methyl 2-(polyhydroxyalkyl)-3-(o-tolylthiocarbomoyl)-thiazolidine-4R-carboxylates obtained from the mixture of monosaccharides produced by acid hydrolysis of the three EPSs examined in this research work [the polysaccharide component of the exudate (EPSC) and the EPSs extracted from asymptomatic (EPSH) and symptomatic (EPSD) cladodes] showed the presence of d-galactose, l-rhamnose, and d-glucose in a 1:1:0.5 ratio in EPSC while d-galactose, l-rhamnose, d-glucose, and d-xylose at the same ratio were observed in EPSH and EPSD. The presence of uronic acid residues in EPSC was also showed by solid state NMR and IR investigation. Furthermore, this manuscript reports the chemical-physical characterization of the gel produced by the infected cactus pear.


Assuntos
Ascomicetos/crescimento & desenvolvimento , Opuntia/metabolismo , Opuntia/microbiologia , Doenças das Plantas/microbiologia , Polissacarídeos/metabolismo
5.
J Sci Food Agric ; 102(2): 680-687, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34171121

RESUMO

BACKGROUND: The brown rot fungus, Gnomoniopsis castanea, is the main organism responsible for the outbreak of chestnut postharvest decay that is threatening the sustainability of the chestnut market in Europe. Currently, no specific strategy is available to mitigate the impact and remediate the high losses of fruits in postharvest storage. In the present study, the different phases of chestnut handling in a standard facility plant were analyzed by evaluating the amount of fruit rot and infection by G. castanea at each phase. RESULTS: The warm bath (48 °C) was identified as the critical phase, requiring strict parametrization to effectively inactivate G. castanea in fruits. Laboratory tests indicated that maintaining fruits at 50 °C for a maximum of 45 min provided optimal conditions to completely inactivate G. castanea inoculum during postharvest handling. However, the warm bath at 50 °C and over was not effective in inactivating the complex of fungal taxa responsible for contamination and development of molds. Higher temperatures and extended treatment times caused significant losses in fruit quality, as indicated by taste panel evaluation. Upscaling of postharvest facilities is discussed and critically evaluated. CONCLUSION: The warm bath (50 °C for 45 min) is effective in completely inactivating G. castanea in fruits but did not reduce the impacts of the complex of molds responsible for external contamination and mycotoxin production. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Ascomicetos/fisiologia , Fagaceae/microbiologia , Conservação de Alimentos/métodos , Doenças das Plantas/microbiologia , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento , Fagaceae/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Frutas/microbiologia , Temperatura Alta , Doenças das Plantas/prevenção & controle
6.
J Toxicol Environ Health A ; 85(2): 43-55, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34459359

RESUMO

Monilinia fructicola (Wint.) Honey is a plant pathogenic fungus that infects stone fruits such as peach, nectarine and plum, which are high demand cultivars found in Brazil. This pathogen may remain latent in the host, showing no apparent signs of disease, and consequently may spread to different countries. The aim of this study was to evaluate the activity of hydroalcoholic extract (HydE) obtained from Lactarius deliciosus (L.) Sf. Gray a mushroom, against M. fructicola phytopathogenic-induced mycelial growth. In addition, the purpose of this study was to examine phytotoxicity attributed to HydE using Brassica oleracea seeds, as well as cytotoxic analysis of this extract on cells of mouse BALB/c monocyte macrophage cell line (J774A.1 cell line) (ATCC TIB-67). The L. deliciosus HydE inhibited fungal growth and reduced phytopathogen mycelial development at a concentration of 1.25 mg/ml. Our results demonstrated that the extract exhibited phytotoxicity as evidenced by (1) interference on germination percentage and rate index, (2) decreased root and initial growth measures, and (3) lower fresh weight of seedlings but no cytotoxicity in Vero cell lines. Data suggest that the use of the L. deliciosus extracts may be beneficial for fungal control without any apparent adverse actions on mouse BALB/c monocyte macrophage cell line (J774A.1 cell line) viability.


Assuntos
Antifúngicos/farmacologia , Basidiomycota/química , Agentes de Controle Biológico/farmacologia , Animais , Antifúngicos/química , Ascomicetos/efeitos dos fármacos , Ascomicetos/crescimento & desenvolvimento , Agentes de Controle Biológico/química , Brasil , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Frutas/microbiologia , Germinação/efeitos dos fármacos , Camundongos , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Fenol/análise , Doenças das Plantas/microbiologia , Sementes/crescimento & desenvolvimento , Sementes/microbiologia
7.
mBio ; 12(6): e0317321, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34933451

RESUMO

Proper protein secretion is critical for fungal development and pathogenesis. However, the potential roles of proteins involved in the early secretory pathway are largely undescribed in filamentous fungi. p24 proteins are cargo receptors that cycle between the endoplasmic reticulum (ER) and Golgi apparatus in the early secretory pathway and recruit cargo proteins to nascent vesicles. This study characterized the function of two p24 family proteins (SsEmp24 and SsErv25) in a phytopathogenic fungus, Sclerotinia sclerotiorum. Both SsEmp24 and SsErv25 were upregulated during the early stages of S. sclerotiorum infection. ΔSsEmp24 mutant and ΔSsErv25 mutant displayed abnormal vegetative growth and sclerotium formation, were defective in infection cushion formation, and showed lower virulence on host plants. ΔSsEmp24 mutant had a more severe abnormal phenotype than ΔSsErv25 mutant, implying that SsEmp24 could play a central role in the early secretory pathway. Similar to their Saccharomyces cerevisiae counterparts, SsEmp24 interacted with SsErv25 and predominantly colocalized in the ER or nuclear envelope. The absence of SsEmp24 or SsErv25 led to defective in protein secretion in S. sclerotiorum, including the pathogenicity-related extracellular hydrolytic enzymes and effectors. It is proposed that SsEmp24 and SsErv25, components in the early secretory pathway, are involved in modulating morphogenesis and pathogenicity in S. sclerotiorum by mediating protein secretion. IMPORTANCE Understanding the reproduction and pathogenesis mechanism of phytopathogens could provide new opinions to effectively control fungal diseases. Although it has been known that effectors and extracellular hydrolytic enzymes secreted by phytopathogenic fungi play important roles in fungus-host interactions, the secretion system for the delivery of virulence factors to the host is still largely undescribed. Although the role of the early secretory pathway-associated p24 proteins in S. cerevisiae has been well characterized, the function of these proteins in filamentous fungi was scarcely known prior to this study. The present research provides evidence that p24 proteins participate in the reproduction and pathogenesis of phytopathogenic fungi through the mediation of protein secretion. This research advances our understanding of p24 proteins in filamentous phytopathogenic fungi. In addition, the candidate cargos of the two p24 proteins, SsEmp24 and SsErv25, were screened out by comparative proteomics, which could aid the identification of novel development and virulence-associated factors in phytopathogenic fungi.


Assuntos
Ascomicetos/crescimento & desenvolvimento , Ascomicetos/metabolismo , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia , Ascomicetos/genética , Ascomicetos/patogenicidade , Brassica napus/microbiologia , Retículo Endoplasmático/microbiologia , Proteínas Fúngicas/genética , Morfogênese , Transporte Proteico , Via Secretória , Virulência
8.
ACS Chem Biol ; 16(11): 2632-2640, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34724608

RESUMO

Sialidases catalyze the release of sialic acid from the terminus of glycan chains. We previously characterized the sialidase from the opportunistic fungal pathogen, Aspergillus fumigatus, and showed that it is a Kdnase. That is, this enzyme prefers 3-deoxy-d-glycero-d-galacto-non-2-ulosonates (Kdn glycosides) as the substrate compared to N-acetylneuraminides (Neu5Ac). Here, we report characterization and crystal structures of putative sialidases from two other ascomycete fungal pathogens, Aspergillus terreus (AtS) and Trichophyton rubrum (TrS). Unlike A. fumigatus Kdnase (AfS), hydrolysis with the Neu5Ac substrates was negligible for TrS and AtS; thus, TrS and AtS are selective Kdnases. The second-order rate constant for hydrolysis of aryl Kdn glycosides by AtS is similar to that by AfS but 30-fold higher by TrS. The structures of these glycoside hydrolase family 33 (GH33) enzymes in complex with a range of ligands for both AtS and TrS show subtle changes in ring conformation that mimic the Michaelis complex, transition state, and covalent intermediate formed during catalysis. In addition, they can aid identification of important residues for distinguishing between Kdn and Neu5Ac substrates. When A. fumigatus, A. terreus, and T. rubrum were grown in chemically defined media, Kdn was detected in mycelial extracts, but Neu5Ac was only observed in A. terreus or T. rubrum extracts. The C8 monosaccharide 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) was also identified in A. fumigatus and T. rubrum samples. A fluorescent Kdn probe was synthesized and revealed the localization of AfS in vesicles at the cell surface.


Assuntos
Ascomicetos/enzimologia , Neuraminidase/metabolismo , Ascomicetos/crescimento & desenvolvimento , Catálise , Domínio Catalítico , Meios de Cultura , Estabilidade Enzimática , Corantes Fluorescentes/química , Concentração de Íons de Hidrogênio , Cinética , Neuraminidase/química , Conformação Proteica , Especificidade por Substrato , Temperatura
9.
PLoS Genet ; 17(11): e1009924, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34788288

RESUMO

Higher fungi can rapidly produce large numbers of spores suitable for aerial dispersal. The efficiency of the dispersal and spore resilience to abiotic stresses correlate with their hydrophobicity provided by the unique amphiphilic and superior surface-active proteins-hydrophobins (HFBs)-that self-assemble at hydrophobic/hydrophilic interfaces and thus modulate surface properties. Using the HFB-enriched mold Trichoderma (Hypocreales, Ascomycota) and the HFB-free yeast Pichia pastoris (Saccharomycetales, Ascomycota), we revealed that the rapid release of HFBs by aerial hyphae shortly prior to conidiation is associated with their intracellular accumulation in vacuoles and/or lipid-enriched organelles. The occasional internalization of the latter organelles in vacuoles can provide the hydrophobic/hydrophilic interface for the assembly of HFB layers and thus result in the formation of HFB-enriched vesicles and vacuolar multicisternal structures (VMSs) putatively lined up by HFBs. These HFB-enriched vesicles and VMSs can become fused in large tonoplast-like organelles or move to the periplasm for secretion. The tonoplast-like structures can contribute to the maintenance of turgor pressure in aerial hyphae supporting the erection of sporogenic structures (e.g., conidiophores) and provide intracellular force to squeeze out HFB-enriched vesicles and VMSs from the periplasm through the cell wall. We also show that the secretion of HFBs occurs prior to the conidiation and reveal that the even spore coating of HFBs deposited in the extracellular matrix requires microscopic water droplets that can be either guttated by the hyphae or obtained from the environment. Furthermore, we demonstrate that at least one HFB, HFB4 in T. guizhouense, is produced and secreted by wetted spores. We show that this protein possibly controls spore dormancy and contributes to the water sensing mechanism required for the detection of germination conditions. Thus, intracellular HFBs have a range of pleiotropic functions in aerial hyphae and spores and are essential for fungal development and fitness.


Assuntos
Parede Celular/genética , Proteínas Fúngicas/genética , Esporos Fúngicos/genética , Trichoderma/genética , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento , Interações Hidrofóbicas e Hidrofílicas , Hifas/genética , Hifas/crescimento & desenvolvimento , Hypocreales/genética , Hypocreales/crescimento & desenvolvimento , Esporos Fúngicos/crescimento & desenvolvimento , Trichoderma/crescimento & desenvolvimento
10.
mBio ; 12(6): e0260021, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34781734

RESUMO

Acetylation and deacetylation of histones are key epigenetic mechanisms for gene regulation in response to environmental stimuli. RPD3 is a well-conserved class I histone deacetylase (HDAC) that is involved in diverse biological processes. Here, we investigated the roles of the Magnaporthe oryzae RPD3 (MoRPD3) gene, an ortholog of Saccharomyces cerevisiae Rpd3, during development and pathogenesis in the model plant-pathogenic fungus Magnaporthe oryzae. We demonstrated that the MoRPD3 gene is able to functionally complement the yeast Rpd3 deletion mutant despite the C-terminal extension of the MoRPD3 protein. MoRPD3 localizes primarily to the nuclei of vegetative hyphae, asexual spores, and invasive hyphae. Deletion of MoRPD3 appears to be lethal. Depletion of MoRPD3 transcripts via gene silencing (MoRPD3kd, where "kd" stands for "knockdown") has opposing effects on asexual and sexual reproduction. Although conidial germination and appressorium formation rates of the mutants were almost comparable to those of the wild type, in-depth analysis revealed that the appressoria of mutants are smaller than those of the wild type. Furthermore, the MoRPD3kd strain shows a significant reduction in pathogenicity, which can be attributed to the delay in appressorium-mediated penetration and impaired invasive growth. Interestingly, MoRPD3 does not regulate potassium transporters, as shown for Rpd3 of S. cerevisiae. However, it functioned in association with the target of rapamycin (TOR) kinase pathway, resulting in the dependency of appressorium formation on hydrophilic surfaces and on TOR's inhibition by MoRPD3. Taken together, our results uncovered distinct and evolutionarily conserved roles of MoRPD3 in regulating fungal reproduction, infection-specific development, and virulence. IMPORTANCE RPD3 is an evolutionarily conserved class I histone deacetylase (HDAC) that plays a pivotal role in diverse cellular processes. In filamentous fungal pathogens, abrogation of the gene encoding RPD3 results in either lethality or severe growth impairment, making subsequent genetic analyses challenging. Magnaporthe oryzae is a causal agent of rice blast disease, which is responsible for significant annual yield losses in rice production. Here, we characterized the RPD3 gene of M. oryzae (MoRPD3) in unprecedented detail using a gene-silencing approach. We provide evidence that MoRPD3 is a bona fide HDAC regulating fungal reproduction and pathogenic development by potentially being involved in the TOR-mediated signaling pathway. To the best of our knowledge, this work is the most comprehensive genetic dissection of RPD3 in filamentous fungal pathogens. Our work extends and deepens our understanding of how an epigenetic factor is implicated in the development and virulence of fungal pathogens of plants.


Assuntos
Ascomicetos/enzimologia , Ascomicetos/patogenicidade , Proteínas Fúngicas/metabolismo , Histona Desacetilases/metabolismo , Oryza/microbiologia , Doenças das Plantas/microbiologia , Acetilação , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Histona Desacetilases/genética , Histonas/genética , Histonas/metabolismo , Hifas/enzimologia , Hifas/genética , Hifas/crescimento & desenvolvimento , Hifas/patogenicidade , Esporos Fúngicos/enzimologia , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/patogenicidade , Virulência
11.
Exp Parasitol ; 231: 108172, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34774533

RESUMO

The nematophagous fungus Duddingtonia flagrans is used in integrated management of gastrointestinal nematodes in ruminants. The chlamydospores of the fungus, orally administered, pass through the segments of the ruminant digestive tract and, in the feces, capture the nematodes preventing their migration to grasslands. The drastic conditions of the gastrointestinal segments can negatively affect the fungus' biocontrol activity. The aim of this study was to assess the effect of in vitro conditions of the sheep's main gastrointestinal segments on the concentration, viability and nematode predatory ability of D. flagrans chlamydospores. The segments evaluated separately in vitro were the oral cavity, rumen, abomasum, and small intestine. The results showed that chlamydospores concentration was not affected by exposure to the different segments. The viability of the chlamydospores after exposure to the oral cavity (2.53 × 106 CFU/mL) and small intestine (1.24 × 105 CFU/mL) was significantly lower than its control treatment, with values of 6.67 × 106 CFU/mL and 2.31 × 105 CFU/mL respectively. Nematode predatory ability after rumen exposure was reduced by 7% compared to the control treatment, by 25% after abomasum exposure and by 17% after small intestine. This study revealed the individual in vitro effect of each segment of ovine gastrointestinal tract on the integrity of this strain of the fungus D. flagrans affecting its viability and nematode predatory ability under the evaluated conditions. Delivery systems could be designed to protect chlamydospores considering the impact of each gastrointestinal segment.


Assuntos
Ascomicetos/fisiologia , Gastroenteropatias/prevenção & controle , Trato Gastrointestinal/microbiologia , Infecções por Nematoides/prevenção & controle , Abomaso/microbiologia , Abomaso/parasitologia , Análise de Variância , Animais , Ascomicetos/crescimento & desenvolvimento , Fezes/parasitologia , Gastroenteropatias/microbiologia , Gastroenteropatias/parasitologia , Trato Gastrointestinal/parasitologia , Intestino Delgado/microbiologia , Intestino Delgado/parasitologia , Boca/microbiologia , Boca/parasitologia , Infecções por Nematoides/microbiologia , Controle Biológico de Vetores/métodos , Rúmen/microbiologia , Rúmen/parasitologia , Ovinos , Esporos Fúngicos/crescimento & desenvolvimento
12.
Microbiol Spectr ; 9(2): e0086721, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34612666

RESUMO

An investigation of members of the soil keratinophilic fungi community in China resulted in the identification of one new monotypic genus, Zongqia, and 10 new species, 2 of which are affiliated with Solomyces, 1 with the new genus Zongqia, 4 with Pseudogymnoascus, and 3 with Scedosporium. These novel taxa form an independent lineage distinct from other species, based on morphological and multilocus phylogenetic analyses. Descriptions, illustrations, and notes are provided for each taxon. These new taxa of the soil keratinophilic fungi add to the increasing number of fungi known from China, and it is now evident that numerous novel taxa are waiting to be described. IMPORTANCE Keratinophilic fungi are a group that can degrade and utilize keratin-rich material. It is also because of this ability that many taxa can cause infections in animals or humans but remain poorly studied. In this study, we reported a novel genus and 10 novel species, 7 novel species belonging to the order Thelebolales and 3 to the genus Scedosporium, based on multilocus phylogenetic analyses combined with morphological characteristics. Our study significantly updates the taxonomy of Thelebolales and Scedosporium and enhances our understanding of this group of the keratin-degrading fungal community. The findings also encourage future studies on the artificially constructed keratin-degrading microbial consortia.


Assuntos
Ascomicetos/classificação , Ascomicetos/isolamento & purificação , Queratinas/metabolismo , Técnicas de Tipagem Micológica/métodos , Ascomicetos/crescimento & desenvolvimento , China , Tipagem de Sequências Multilocus , Micobioma/fisiologia , Solo , Microbiologia do Solo
13.
Nat Microbiol ; 6(11): 1383-1397, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34707224

RESUMO

Rice blast is a devastating disease caused by the fungal pathogen Magnaporthe oryzae that threatens rice production around the world. The fungus produces a specialized infection cell, called the appressorium, that enables penetration through the plant cell wall in response to surface signals from the rice leaf. The underlying biology of plant infection, including the regulation of appressorium formation, is not completely understood. Here we report the identification of a network of temporally coregulated transcription factors that act downstream of the Pmk1 mitogen-activated protein kinase pathway to regulate gene expression during appressorium-mediated plant infection. We show that this tiered regulatory mechanism involves Pmk1-dependent phosphorylation of the Hox7 homeobox transcription factor, which regulates genes associated with induction of major physiological changes required for appressorium development-including cell-cycle control, autophagic cell death, turgor generation and melanin biosynthesis-as well as controlling a additional set of virulence-associated transcription factor-encoding genes. Pmk1-dependent phosphorylation of Mst12 then regulates gene functions involved in septin-dependent cytoskeletal re-organization, polarized exocytosis and effector gene expression, which are necessary for plant tissue invasion. Identification of this regulatory cascade provides new potential targets for disease intervention.


Assuntos
Ascomicetos/enzimologia , Proteínas Fúngicas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Oryza/microbiologia , Doenças das Plantas/microbiologia , Esporos Fúngicos/enzimologia , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/patogenicidade , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Fosforilação , Esporos Fúngicos/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Virulência
14.
PLoS One ; 16(9): e0257823, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34587206

RESUMO

Fungal hyphal growth and branching are essential traits that allow fungi to spread and proliferate in many environments. This sustained growth is essential for a myriad of applications in health, agriculture, and industry. However, comparisons between different fungi are difficult in the absence of standardized metrics. Here, we used a microfluidic device featuring four different maze patterns to compare the growth velocity and branching frequency of fourteen filamentous fungi. These measurements result from the collective work of several labs in the form of a competition named the "Fungus Olympics." The competing fungi included five ascomycete species (ten strains total), two basidiomycete species, and two zygomycete species. We found that growth velocity within a straight channel varied from 1 to 4 µm/min. We also found that the time to complete mazes when fungal hyphae branched or turned at various angles did not correlate with linear growth velocity. We discovered that fungi in our study used one of two distinct strategies to traverse mazes: high-frequency branching in which all possible paths were explored, and low-frequency branching in which only one or two paths were explored. While the high-frequency branching helped fungi escape mazes with sharp turns faster, the low-frequency turning had a significant advantage in mazes with shallower turns. Future work will more systematically examine these trends.


Assuntos
Crowdsourcing/métodos , Fungos/crescimento & desenvolvimento , Técnicas Analíticas Microfluídicas/instrumentação , Ascomicetos/crescimento & desenvolvimento , Basidiomycota/crescimento & desenvolvimento , Fenômenos Biológicos , Fungos/classificação , Hifas/classificação , Hifas/crescimento & desenvolvimento , Especificidade da Espécie
15.
Pak J Biol Sci ; 24(4): 527-536, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34486312

RESUMO

<b>Background and Objective:</b> Fungi of the genus <i>Trichoderma </i>have high versatility in the control of different plant diseases. Among the main mechanisms of action of these fungi against phytopathogenic fungi, the production of Volatile Organic Compounds (VOCs) is mentioned. These compounds are said to inhibit the mycelial growth of various fungal pathogens. The objective of this work was to evaluate the <i>in vitro</i> inhibition of the mycelial growth of <i>Sclerotinia sclerotiorum </i>by VOCs from six <i>Trichoderma </i>strains in different stages of development of the biocontrol agent. <b>Materials and Methods:</b> In this work, the <i>in vitro </i>evaluation of the mycelial growth of the phytopathogen <i>S. sclerotiorum </i>by VOCs from six <i>Trichoderma </i>strains was carried out: <i>T. koningiopsis </i>(CEN1386), <i>T. asperelloides </i>(CEN1397), <i>T. longibrachiatum </i>(CEN1399) <i>T. lentiforme </i>(CEN1416), <i>T</i>. <i>perbedyi</i> (CEN1389) and <i>T. azevedoi</i> (CEN1241). Observations were made at different stages of antagonist development: mycelial Growth Phase (GP), Sporulation Phase (SP) and paired with the Pathogen Phase (PP). Besides, the sporulation of the tested strains was quantified. <b>Conclusion:</b> In all experimental conditions, the VOCs produced by the CEN1241 strain showed a greater inhibitory effect, although the inhibition was less evident when the cultures of <i>S. sclerotiorum </i>were exposed in the GP phase of the antagonist. Greater sporulation was observed with <i>T. lentiforme</i> (CEN1416), a fact not related to a better ability to inhibit <i>S. sclerotiorum</i>, by VOCs.


Assuntos
Ascomicetos/efeitos dos fármacos , Ascomicetos/crescimento & desenvolvimento , Micélio/patogenicidade , Trichoderma/patogenicidade , Compostos Orgânicos Voláteis/efeitos adversos , Ascomicetos/fisiologia , Compostos Orgânicos Voláteis/metabolismo
16.
PLoS One ; 16(9): e0257863, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34591915

RESUMO

The endophytic bacterium Burkholderia contaminans NZ was isolated from jute, which is an important fiber-producing plant. This bacterium exhibits significant growth promotion activity in in vivo pot experiments, and like other plant growth-promoting (PGP) bacteria fixes nitrogen, produces indole acetic acid (IAA), siderophore, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. B. contaminans NZ is considered to exert a promising growth inhibitory effect on Macrophomina phaseolina, a phytopathogen responsible for infecting hundreds of crops worldwide. This study aimed to identify the possibility of B. contaminans NZ as a safe biocontrol agent and assess its effectiveness in suppressing phytopathogenic fungi, especially M. phaseolina. Co-culture of M. phaseolina with B. contaminans NZ on both solid and liquid media revealed appreciable growth suppression of M. phaseolina and its chromogenic aberration in liquid culture. Genome mining of B. contaminans NZ using NaPDoS and antiSMASH revealed gene clusters that displayed 100% similarity for cytotoxic and antifungal substances, such as pyrrolnitrin. GC-MS analysis of B. contaminans NZ culture extracts revealed various bioactive compounds, including catechol; 9,10-dihydro-12'-hydroxy-2'-methyl-5'-(phenylmethyl)- ergotaman 3',6',18-trione; 2,3-dihydro-3,5- dihydroxy-6-methyl-4H-pyran-4-one; 1-(1,6-Dioxooctadecyl)- pyrrolidine; 9-Octadecenamide; and 2- methoxy- phenol. These compounds reportedly exhibit tyrosinase inhibitory, antifungal, and antibiotic activities. Using a more targeted approach, an RP-HPLC purified fraction was analyzed by LC-MS, confirming the existence of pyrrolnitrin in the B. contaminans NZ extract. Secondary metabolites, such as catechol and ergotaman, have been predicted to inhibit melanin synthesis in M. phaseolina. Thus, B. contaminans NZ appears to inhibit phytopathogens by apparently impairing melanin synthesis and other potential biochemical pathways, exhibiting considerable fungistatic activity.


Assuntos
Ascomicetos/crescimento & desenvolvimento , Burkholderia/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Melaninas/biossíntese , Pirrolnitrina/biossíntese , Ascomicetos/efeitos dos fármacos , Ascomicetos/patogenicidade , Agentes de Controle Biológico/farmacologia , Burkholderia/metabolismo , Técnicas de Cocultura , Produtos Agrícolas/microbiologia , Endófitos , Cromatografia Gasosa-Espectrometria de Massas , Ácidos Indolacéticos/metabolismo , Fixação de Nitrogênio , Pirrolnitrina/farmacologia , Sequenciamento Completo do Genoma
17.
Exp Parasitol ; 230: 108156, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34534535

RESUMO

The nematophagous fungus Duddingtonia flagrans, used for the biological control of gastrointestinal nematodes in livestock, is fed to infected animals so its chlamydospores and the parasite eggs are voided together with faeces where the fungus preys on nematode larvae, thus reducing pasture infectivity. The number of chlamydospores needed for the fungus to be efficient in the presence of a wide range in numbers of parasitic eggs is largely unknown and a matter of discussion. The aim of this study was to determine the fungal efficacy of four different chlamydospore concentrations against three different levels of cattle faecal egg counts. Fungal concentrations of 11000, 6250, 3000 and 1000 chlamydospores/gram of faeces (cpg) were added to cultures containing 840, 480 or 100 eggs/gram of faeces (epg). After 14 days of incubation, the efficacy of D. flagrans, in decreasing order of chlamydospore concentrations, ranged from 100% (P < 0.0001) to 77% (P > 0.0999) in the 100 epg groups; 100% (P < 0.0001) to 92% (P = 0.4625) in the 480 epg groups and 100% (P < 0.0001) to 96% (P = 0.7081) in the 840 epg groups. The results indicate that the numbers of eggs in cattle faeces were not a determining factor on the fungal efficacy against gastrointestinal nematodes.


Assuntos
Ascomicetos/crescimento & desenvolvimento , Doenças dos Bovinos/parasitologia , Gastroenteropatias/veterinária , Infecções por Nematoides/veterinária , Animais , Ascomicetos/fisiologia , Bovinos , Doenças dos Bovinos/microbiologia , Fezes/microbiologia , Fezes/parasitologia , Gastroenteropatias/microbiologia , Gastroenteropatias/parasitologia , Infecções por Nematoides/microbiologia , Infecções por Nematoides/parasitologia , Contagem de Ovos de Parasitas/veterinária
18.
Appl Microbiol Biotechnol ; 105(19): 7395-7410, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34536105

RESUMO

In eukaryotes, myosin provides the necessary impetus for a series of physiological processes, including organelle movement, cytoplasmic flow, cell division, and mitosis. Previously, three members of myosin were identified in Magnaporthe oryzae, with class II and class V myosins playing important roles in intracellular transport, fungal growth, and pathogenicity. However, limited is known about the biological function of the class I myosin protein in the rice blast fungus. Here, we found that Momyo1 is highly expressed during conidiation and infection. Functional characterization of this gene via RNA interference (RNAi) revealed that Momyo1 is required for vegetative growth, conidiation, melanin pigmentation, and pathogenicity of M. oryzae. The Momyo1 knockdown mutant is defective in formation of appressorium-like structures (ALS) at the hyphal tips. In addition, Momyo1 also displays defects on cell wall integrity, hyphal hydrophobicity, extracellular enzyme activities, endocytosis, and formation of the Spitzenkörper. Furthermore, Momyo1 was identified to physically interact with the MoShe4, a She4p/Dim1p orthologue potentially involved in endocytosis, polarization of the actin cytoskeleton. Overall, our findings provide a novel insight into the regulatory mechanism of Momyo1 that is involved in fungal growth, cell wall integrity, endocytosis, and virulence of M. oryzae. KEY POINTS: • Momyo1 is required for vegetative growth and pigmentation of M. oryzae. • Momyo1 is essential for cell wall integrity and endocytosis of M. oryzae. • Momyo1 is involved in hyphal surface hydrophobicity of M. oryzae.


Assuntos
Ascomicetos/patogenicidade , Endocitose , Miosinas , Ascomicetos/crescimento & desenvolvimento , Miosinas/genética , Virulência
19.
Biomed Res Int ; 2021: 9930210, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395628

RESUMO

The present study was aimed at isolating endophytic fungi from the Asian culinary and medicinal plant Lilium davidii and analyzing its antifungal and plant growth-promoting effects. In this study, the fungal endophyte Acremonium sp. Ld-03 was isolated from the bulbs of L. davidii and identified through morphological and molecular analysis. The molecular and morphological analysis confirmed the endophytic fungal strain as Acremonium sp. Ld-03. Antifungal effects of Ld-03 were observed against Fusarium oxysporum, Botrytis cinerea, Botryosphaeria dothidea, and Fusarium fujikuroi. The highest growth inhibition, i.e., 78.39 ± 4.21%, was observed for B. dothidea followed by 56.68 ± 4.38%, 43.62 ± 3.81%, and 20.12 ± 2.45% for B. cinerea, F. fujikuroi, and F. oxysporum, respectively. Analysis of the ethyl acetate fraction through UHPLC-LTQ-IT-MS/MS revealed putative secondary metabolites which included xanthurenic acid, valyl aspartic acid, gancidin W, peptides, and cyclic dipeptides such as valylarginine, cyclo-[L-(4-hydroxy-Pro)-L-leu], cyclo(Pro-Phe), and (3S,6S)-3-benzyl-6-(4-hydroxybenzyl)piperazine-2,5-dione. Other metabolites included (S)-3-(4-hydroxyphenyl)-2-((S)-pyrrolidine-2-carboxamido)propanoic acid, dibutyl phthalate (DBP), 9-octadecenamide, D-erythro-C18-Sphingosine, N-palmitoyl sphinganine, and hydroxypalmitoyl sphinganine. The strain Ld-03 showed indole acetic acid (IAA) production with or without the application of exogenous tryptophan. The IAA ranged from 53.12 ± 3.20 µg ml-1 to 167.71 ± 7.12 µg ml-1 under different tryptophan concentrations. The strain was able to produce siderophore, and its production was significantly decreased with increasing Fe(III) citrate concentrations in the medium. The endophytic fungal strain also showed production of organic acids and phosphate solubilization activity. Plant growth-promoting effects of the strain were evaluated on in vitro seedling growth of Allium tuberosum. Application of 40% culture dilution resulted in a significant increase in root and shoot length, i.e., 24.03 ± 2.71 mm and 37.27 ± 1.86 mm, respectively, compared to nontreated control plants. The fungal endophyte Ld-03 demonstrated the potential of conferring disease resistance and plant growth promotion. Therefore, we conclude that the isolated Acremonium sp. Ld-03 should be further investigated before utilization as a biocontrol agent and plant growth stimulator.


Assuntos
Acremonium/química , Antifúngicos/farmacologia , Ascomicetos/crescimento & desenvolvimento , Botrytis/crescimento & desenvolvimento , Fusarium/crescimento & desenvolvimento , Lilium/microbiologia , Reguladores de Crescimento de Plantas/farmacologia , Acetatos/química , Acetatos/farmacologia , Acremonium/isolamento & purificação , Acremonium/fisiologia , Antifúngicos/química , Ascomicetos/efeitos dos fármacos , Botrytis/efeitos dos fármacos , Cebolinha-Francesa/efeitos dos fármacos , Cebolinha-Francesa/crescimento & desenvolvimento , Cromatografia Líquida de Alta Pressão , Resistência à Doença , Endófitos/isolamento & purificação , Endófitos/fisiologia , Fusarium/efeitos dos fármacos , Ácidos Indolacéticos/química , Ácidos Indolacéticos/isolamento & purificação , Ácidos Indolacéticos/farmacologia , Metabolômica/métodos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/isolamento & purificação , Raízes de Plantas/microbiologia , Metabolismo Secundário , Espectrometria de Massas em Tandem
20.
Biomolecules ; 11(8)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34439811

RESUMO

Verticillium wilt, primarily induced by the soil-borne fungus Verticillium dahliae, is a serious threat to cotton fiber production. There are a large number of really interesting new gene (RING) domain-containing E3 ubiquitin ligases in Arabidopsis, of which three (At2g39720 (AtRHC2A), At3g46620 (AtRDUF1), and At5g59550 (AtRDUF2)) have a domain of unknown function (DUF) 1117 domain in their C-terminal regions. This study aimed to detect and characterize the RDUF members in cotton, to gain an insight into their roles in cotton's adaptation to environmental stressors. In this study, a total of 6, 7, 14, and 14 RDUF (RING-DUF1117) genes were detected in Gossypium arboretum, G. raimondii, G. hirsutum, and G. barbadense, respectively. These RDUF genes were classified into three groups. The genes in each group were highly conserved based on gene structure and domain analysis. Gene duplication analysis revealed that segmental duplication occurred during cotton evolution. Expression analysis revealed that the GhRDUF genes were widely expressed during cotton growth and under abiotic stresses. Many cis-elements related to hormone response and environment stressors were identified in GhRDUF promoters. The predicted target miRNAs and transcription factors implied that GhRDUFs might be regulated by gra-miR482c, as well as by transcription factors, including MYB, C2H2, and Dof. The GhRDUF genes responded to cold, drought, and salt stress and were sensitive to jasmonic acid, salicylic acid, and ethylene signals. Meanwhile, GhRDUF4D expression levels were enhanced after V. dahliae infection. Subsequently, GhRDUF4D was verified by overexpression in Arabidopsis and virus-induced gene silencing treatment in upland cotton. We observed that V. dahliae resistance was significantly enhanced in transgenic Arabidopsis, and weakened in GhRDUF4D silenced plants. This study conducted a comprehensive analysis of the RDUF genes in Gossypium, hereby providing basic information for further functional studies.


Assuntos
Proteínas de Arabidopsis/genética , Resistência à Doença/genética , Gossypium/genética , Doenças das Plantas/genética , Imunidade Vegetal/genética , Ubiquitina-Proteína Ligases/genética , Adaptação Fisiológica/genética , Adaptação Fisiológica/imunologia , Arabidopsis/classificação , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/metabolismo , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/patogenicidade , Sequência de Bases , Dedos de Zinco CYS2-HIS2/genética , Dedos de Zinco CYS2-HIS2/imunologia , Sequência Conservada , Regulação da Expressão Gênica de Plantas , Gossypium/classificação , Gossypium/imunologia , Gossypium/microbiologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , MicroRNAs/genética , MicroRNAs/imunologia , Família Multigênica , Filogenia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estresse Fisiológico , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...